3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization
نویسندگان
چکیده
Confocal laser scanning microscopy is a powerful and increasingly popular technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. However this algorithm does not necessarily converge to a suitable solution, as it tends to amplify noise. If it is used with a regularizing constraint (some prior knowledge on the data), Richardson-Lucy regularized with a well-chosen constraint, always converges to a suitable solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularizing constraint based on Total Variation, whose smoothing avoids oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results both visually and using quantitative measures. We compare several well-known deconvolution methods to the proposed method, such as standard Richardson-Lucy (no regularization), Richardson-Lucy with Tikhonov-Miller regularization, and an additive gradient-based algorithm. Key-words: confocal microscopy, 3D image processing, deconvolution, point spread function, multiplicative noise, total variation, ... ∗ Ariana Group, INRIA/I3S, 2004 route des Lucioles BP93, 06902 Sophia Antipolis, France † Quantitative Image Analysis Group, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris, France ‡ Dynamic Imagery Platform Group, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris, France § Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100 Déconvolution en microscopie tridimensionnelle utilisant l’algorithme de Richardson-Lucy régularisé avec la variation totale Résumé : La microscopie confocale (Confocal laser scanning microscopy ou microscopie confocale à balayage laser) est une méthode puissante de plus en plus populaire pour l’imagerie 3D de spécimens biologiques. Malheureusement, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones du spécimen non focalisées, mais aussi par un bruit de Poisson dû à la détection, qui se fait à faible flux de photons. Plusieurs méthodes de déconvolution ont été proposées pour réduire ces dégradations, avec en particulier l’algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme utilisé comme tel ne converge pas nécessairement vers une solution adaptée, car il tend à amplifier le bruit. Si par contre on l’utilise avec une contrainte de régularisation (connaissance a priori sur l’objet que l’on cherche à restaurer, par exemple), Richardson-Lucy régularisé converge toujours vers une solution adaptée, sans amplification du bruit. Nous proposons ici de combiner l’algorithme de Richardson-Lucy avec une contrainte de régularisation basée sur la Variation Totale, dont l’effet d’adoucissement permet d’éviter les oscillations d’intensité tout en préservant les bords des objets. Nous montrons sur des images synthétiques et sur des images réelles que cette contrainte de régularisation améliore les résultats de la déconvolution à la fois qualitativement et quantitativement. Nous comparons plusieurs méthodes de déconvolution bien connues à la méthode que nous proposons, comme Richardson-Lucy standard (pas de régularisation), Richardson-Lucy régularisé avec Tikhonov-Miller, et un algorithme basé sur la descente de gradients (sous l’hypothèse d’un bruit additif gaussien). Mots-clés : microscopie confocale, traitement d’images 3D, déconvolution, réponse impulsionnelle, bruit multiplicatif, variation totale, ... Richardson-Lucy with Total Variation Regularization 3
منابع مشابه
Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution.
Confocal laser scanning microscopy is a powerful and popular technique for 3D imaging of biological specimens. Although confocal microscopy images are much sharper than standard epifluorescence ones, they are still degraded by residual out-of-focus light and by Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including...
متن کاملApplication of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images
Although confocal microscopes have considerably smaller contribution of out-of-focus light than widefield microscopes, the confocal images can still be enhanced mathematically if the optical and data acquisition effects are accounted for. For that, several deconvolution algorithms have been proposed. As a practical solution, maximum-likelihood algorithms with regularization have been used. Howe...
متن کاملFluorescence Microscopy Deconvolution Based on Bregman Iteration and Richardson-Lucy Algorithm with TV Regularization
Fluorescence microscopy has become an important tool in biological and medical sciences for imaging thin specimen, even living ones. Due to Out-of-focus blurring and noise the acquired images are degraded and therefore it can be difficult to analyse them. In the last decade many methods have been proposed to restorate these images. One of the most popular methods to restore microscopy images is...
متن کاملBlind Deconvolution and 3d Psf Modeling in Biological Microscopy
Multidimensional microscopy is an essential tool for research and industry in the areas of cellular biology and molecular medicine, cell-based drug discovery and cellular therapies. Modern microscopic methodologies have brought the possibility to follow live cells in action, responding to various perturbations. These capabilities include not only detailed dynamic information about cell morpholo...
متن کاملVector Extrapolation-Based Acceleration of Regularized Richardson Lucy Image Deblurring
Confocal fluorescence microscopy has become an important tool in biological and medical sciences for imaging thin specimen, even living ones. Due to out-of-focus blurring and noise the acquired images are degraded and thus it is necessary to restore them. One of the most popular methods is an iterative Richardson-Lucy algorithm with total variation regularization. This algorithm while improving...
متن کامل